
A time delay neural network architecture for efficient modeling of long
temporal contexts

Vijayaditya Peddinti1, Daniel Povey1,2, Sanjeev Khudanpur1,2

1Center for Language and Speech Processing &
2Human Language Technology Center of Excellence

Johns Hopkins University, Baltimore, MD 21218, USA
vijay.p,khudanpur@jhu.edu, dpovey@gmail.com

Abstract
Recurrent neural network architectures have been shown to effi-
ciently model long term temporal dependencies between acous-
tic events. However the training time of recurrent networks is
higher than feedforward networks due to the sequential nature
of the learning algorithm. In this paper we propose a time de-
lay neural network architecture which models long term tem-
poral dependencies with training times comparable to standard
feed-forward DNNs. The network uses sub-sampling to reduce
computation during training. On the Switchboard task we show
a relative improvement of 6% over the baseline DNN model.
We present results on several LVCSR tasks with training data
ranging from 3 to 1800 hours to show the effectiveness of the
TDNN architecture in learning wider temporal dependencies in
both small and large data scenarios.
Index Terms: time delay neural networks, acoustic modeling,
recurrent neural networks

1. Introduction
Modeling the temporal dynamics in speech, to capture the long
term dependencies between acoustic events, requires an acous-
tic model which can effectively deal with long temporal con-
texts. Two types of approaches to exploit long term temporal
contexts are using feature representations, which are designed
to present this information to the model in a suitable form, or
using acoustic models, which can learn the long term depen-
dencies based on short-term feature representations.

In this paper we adopt the model based approach. Recur-
rent neural networks (RNNs) which use a dynamically changing
contextual window over all of the sequence history rather than
a fixed context window have been shown to achieve state-of-art
performance on LVCSR tasks [1]. However due to recurrent
connections in the network, parallelization during training can-
not be exploited to the same extent as in feed-forward neural
networks.

Another neural network architecture which has been shown
to be effective in modeling long range temporal dependencies
is the time delay neural network (TDNN) proposed in [2]. This
architecture uses a modular and incremental design to create
larger networks from sub-components [3]. Despite being a feed-
forward architecture, computing the hidden activations at all
time steps is computationally expensive. We propose a sub-
sampling technique where hidden activations at only few time
steps are computed at each level. Through a proper selection of
time steps, at which activations are computed, computation can

This work was partially supported by NSF Grant No IIA 0530118.

be reduced, while ensuring that information from all time steps
in the input context is processed by the network.

Neural network architectures have been shown to benefit
from speaker adaptation. However, speaker adaptation tech-
niques like fMLLR [4] require two passes of decoding. The 2-
pass decoding strategy is difficult to use in online speech recog-
nition applications. iVectors which capture both speaker and
environment specific information have been shown to be use-
ful for instantaneous and discriminative adaptation of the neu-
ral network [5, 6]. In this paper we use iVector based neural
network adaptation.

The paper is organized as follows. Section 2 mentions rel-
evant work, Section 3 describes the neural network architecture
and training recipe in greater detail. Section 4 describes the ex-
perimental setup. Section 5 presents and analyzes the results
primarily on the Switchboard task ([7]). It also presents results
on other LVCSR tasks which have 3-1800 hours of training data.
Section 6 presents the conclusions and the future work.

2. Relevant work
Feature representations such as TRAPs [8], wavelet based
multi-scale spectro-temporal representations [9], deep scat-
tering spectra [10] and other modulation feature representa-
tions [11] have been proposed to represent long term spectro-
temporal dynamics of the signal. These features can be used
with standard feed-forward DNNs to model relationships in
wide temporal contexts.

On the other hand, recurrent neural network (RNN) archi-
tectures such as long term short term memory networks [12, 1]
and feed-forward neural network architectures, such as time de-
lay neural networks (TDNNs) [2], have been shown to effec-
tively learn the temporal dynamics of the signal even from short
term feature representations.

Due to dependencies between the time-frames being pro-
cessed in an RNN, parallelization cannot easily be exploited
to the same extent as in feedforward networks. Batching of
sequences and distributed optimization can be used to paral-
lelize the RNN training process. However the training times
are still not competitive with those of feed-forward neural net-
works, especially when using GPUs. Saon et al. [13] have
shown that through unfolding of the recurrent network during
training, matrix-matrix operations can be exploited to speed-
up training. However the unfolded RNN still has dependencies
across hidden-representations computed for various time-steps.
Hence an unfolded network of T time steps requires sequential
computation of T hidden representations.

In this paper we use the feed-forward TDNN architecture,

which does not impose any relationship between the length of
input-context (i.e., unfolding width used during training, in case
of RNNs) and number sequential steps during training. The
TDNN is used for modelling long term temporal dependencies
from short-term speech features i.e., MFCCs.

3. Neural network architecture
When processing a wider temporal context, in a standard DNN,
the initial layer learns an affine transform for the entire temporal
context. However in a TDNN architecture the initial transforms
are learnt on narrow contexts and the deeper layers process the
hidden activations from a wider temporal context. Hence the
higher layers have the ability to learn wider temporal relation-
ships. Each layer in a TDNN operates at a different temporal
resolution, which increases as we go to higher layers of the net-
work.

The transforms in the TDNN architecture are tied across
time steps and for this reason they are seen as a precursor to the
convolutional neural networks. During back-propagation, due
to tying, the lower layers of the network are updated by a gra-
dient accumulated over all the time steps of the input temporal
context. Thus the lower layers of the network are forced to learn
translation invariant feature transforms [2].

t-4

-1 +2

t

t-7 t+2

t-10 t-1 t+5

t-11 t+7

t-13 t+9

-7 +2

-1 +2

-2 +2

-1 +2 -1 +2

-3 +3 -3 +3

t+1 t+4 t-2 t-5 t-8

Layer 4

Layer 3

Layer 2

Layer 1

Figure 1: Computation in TDNN with sub-sampling (red) and
without sub-sampling (blue+red)

The hyper-parameters which define the TDNN network are
the input contexts of each layer required to compute an output
activation, at one time step. A sample TDNN network is shown
in Figure 1. The figure shows the time steps at which activations
are computed, at each layer, and dependencies between activa-
tions across layers. It can be seen that the dependencies across
layers are localized in time. Layerwise context specification,
corresponding to this TDNN, is shown in column 2 of Table 1.

Table 1: Context specification of TDNN in Figure 1

Layer Input context Input context with sub-sampling
1 [−2,+2] [−2, 2]
2 [−1, 2] {−1, 2}
3 [−3, 3] {−3, 3}
4 [−7, 2] {−7, 2}
5 {0} {0}

3.1. Sub-sampling

In a typical TDNN, hidden activations are computed at all time
steps. However there are large overlaps between input contexts
of activations computed at neighboring time steps. Under the
assumption that neighboring activations are correlated, they can
be sub-sampled.

Our approach is, rather than splicing together contiguous
temporal windows of frames at each layer, to allow gaps be-
tween the frames. In fact, in the hidden layers of the network,
we generally splice no more than two frames. For instance, the
notation {−7, 2} means we splice together the input at the cur-
rent frame minus 7 and the current frame plus 2. Figure 1 shows
this pictorially.

Empirically we found that what seems to work best is to
splice together increasingly wide context as we go to higher
layers of the network. The configuration in Figure 1, which is
fairly typical, splices together frames t− 2 through t+ 2 at the
input layer (which we could write as context {−2,−1, 0, 1, 2}
or more compactly as [−2, 2]); and then at three hidden layers
we splice frames at offsets {−1, 2}, {−3, 3} and {−7, 2}. Ta-
ble 1 tabulates these contexts (on the right), and compares with
a hypothetical setup without sub-sampling. The fact that the dif-
ferences between the offsets at the hidden layers were chosen to
all be multiples of 3 is not a coincidence. We designed it this
way in order to ensure that for each output frame, we need to
evaluate a small number of hidden layer activations. The frames
in red in Figure 1 are the ones we need to evaluate.

With the current sub-sampling scheme the overall necessary
computation is reduced during the forward pass and backprop-
agation, due to selective computation of time steps. The train-
ing time of TDNN in Figure 1, without sub-sampling, is ∼10x
compared to that of DNN with same number of layers. With
proposed sub-sampling it is ∼2x the training time of DNN.
Thus the sub-sampling process speeds up the TDNN training
by∼5x. Another advantage of using sub-sampling is the reduc-
tion in the model size. Splicing contiguous frames at hidden
layers would require us to either have a very large number of
parameters, or reduce the hidden-layer size significantly.

Sub-sampling at the middle of the network was also used in
stacked bottle-neck networks [14]. In this architecture bottle-
neck features were spliced across non-contiguous time steps
and used as an input to a second neural network. However the
bottle-neck network was not trained jointly with the final neural
network.

We use asymmetric input contexts, with more context to
the left, as this reduces the latency of the neural network in on-
line decoding, and also because this seems to be more optimal
from a WER perspective. Asymmetric context windows of up
to 16 frames in past and 9 frames in the future were explored
in this paper. It was observed that further extension of con-
text on either side was detrimental to word recognition accu-
racies, though the frame recognition accuracies improved (this
phenomenon is widely known).

A major difference in the current architecture compared to
[2] is the use of the p-norm nonlinearity [15], which is a di-
mension reducing non-linearity. p-norm units with group size
of 10 and p = 2 were used across all neural networks in our
experiments, based on the observations made in [15] 1.

1More recent experiments in our TDNN framework show that that
ReLU nonlinearity may actually perform better in this context than p-
norm, but the full details were not ready in time for this paper and these
results are not presented here.

3.2. Input Features

Mel-frequency cepstral coefficients (MFCCs) [16], without
cepstral truncation, were used as input to the neural network
i.e., 40 MFCCs were computed at each time step. Readers are
recommended to see [17] for a more detailed discussion on in-
put data representation used here and its comparison with log
Mel features.

On each frame we append a 100-dimensional iVector [18]
to the 40-dimensional MFCC input. The MFCC input is not
subject to cepstral mean normalization; the intention is to al-
low the iVector to supply the information about any mean offset
of the speaker’s data, so the network itself can do any feature
normalization that is needed. In order for the mean-offset in-
formation to be encoded in the iVector, we estimate the iVector
on top of features that have not been mean-normalized. How-
ever, the Gaussian posteriors used for the iVector estimation are
based on features that have been mean normalized using a slid-
ing window of 6 seconds.

In order to ensure sufficient variety of the iVectors in the
training data, rather than estimating a separate iVector per
speaker we estimate them in an online fashion, where we only
use frames prior to the current frame, including previous utter-
ances of the same speaker. We re-set the utterance history every
two utterances, so that the iVectors still have some training-data
variety even when there are only a few speakers.

3.3. DNN training

The training recipe detailed in [15], with greedy layer-wise
supervised training, preconditioned stochastic gradient descent
(SGD) updates, exponential learning rate schedule and mixing-
up, was used. Parallel training of the DNNs using up to 18
GPUs was done, using the model averaging technique in [17].

3.3.1. Sequence training

Sequence training was done on the DNN, based on a state-level
variant of the Minimum Phone Error (MPE) criterion, called
sMBR [19] . The training recipe mostly follows [20], although
it has been modified for the parallel-training method. Training
is run in parallel using 4 GPUs, while periodically averaging the
parameters, just as in the cross-entropy training phase.

In the sMBR objective function insertion errors are not pe-
nalized, which could lead to larger number of insertions when
decoding with sMBR trained acoustic models. Correcting this
asymmetry in the sMBR objective function, by penalizing in-
sertions, was shown to improve performance of sMBR models
by 10% WER, relative, in a far field recognition task [21]. This
modified objective function was used in this paper.

To compute the context-dependent state pseudo-likelihoods
from the posteriors estimated by the neural network, the poste-
riors are divided by a prior. We found that the method of using
the mean posterior (computed over a subset of the training data)
as the prior [22] gave an improved performance when decoding
with sMBR tuned models, so we used this method.

4. Experimental Setup
In Tables 2 and 3, we report results on 300 hour Switchboard
conversational telephone speech task. The GMM-HMM sys-
tem, used to generate the alignments for neural network train-
ing, and the language model are similar to those described in
[20]. Results comparing DNN and TDNN architectures are pre-
sented in Table 2.

4.1. Data augmentation and enhanced lexicon

In this paper we are interested in a single-pass decoding setup
which is suitable for the online speech recognition scenario.
Thus the use of speaker adaptive feature transform techniques
like fMLLR during test conditions is not viable. The use of data
augmentation techniques to learn a network that is stable to dif-
ferent perturbations of the data is desirable in this scenario. In
[23], speed perturbation of the training data was done to emulate
vocal tract length perturbations and speaking rate perturbation.
This was shown to provide 4.3% relative improvement across
several LVCSR tasks. This data augmentation technique was
adopted here. Three copies of the training data corresponding
to speed perturbations of 0.9, 1.0 and 1.1 were created.

The iVector based TDNN system relies on the neural net-
work to learn the necessary normalization, based on mean
shifts captured in the iVector. However in well curated audio
databases there is low variance in audio volume, leading to low
variance in iVector w.r.t. mean shifts. Performing volume per-
turbation of the training data, where each recording in the train-
ing data was scaled with a random variable drawn from a uni-
form distribution over [1

8
, 2], emulates mean shifts in the MFCC

domain. It was observed that volume perturbation of the train-
ing data resulted in 1.5% relative improvement in WER across
test sets, compared with only speed perturbation.

In [24], the authors show that use of word pronunciation
probabilities, to distinguish multiple word pronunciations, is
beneficial. Further modeling the probability of silence before
and after each pronunciation explicitly was shown to provide
greater benefits. The lexicon updated with word pronunciation
probabilities and word position dependent silence probabilities
was used for decoding the test utterances.

We present results on Switchboard subset as well as the
complete Hub5 ’00 evaluation set. Only the results in the SWB
column should be compared with the Hub5 ’00 results presented
in [26], [13] and [25].

5. Results
Table 2 compares different TDNNs and the baseline DNN. Each
neural network has 4 hidden layers with p-norm input dimen-
sion of 3000 and group size of 10.

From Table 2, comparing DNN-A and TDNN-A, it can be
seen that even with standard temporal contexts TDNNs perform
better than DNNs. The number of parameters in the DNN-A
system were increased to match the TDNN-A system, by in-
creasing the number of hidden units. The results corresponding
to this system are presented in the row titled DNN-A2. It can be
seen that despite matching the number of parameters the TDNN
system performs better than the DNN system, for the same tem-
poral context. A comparison of DNN-A, DNN-B and TDNN-D
shows that DNNs are not as effective as TDNNs in process-
ing wider temporal contexts. Comparing TDNNs A through E,
[−13, 9] was found to be the optimal temporal context.

A smaller TDNN with layer-wise contexts of TDNN-D was
built, as it would be suitable for online speech recognizers. The
size was reduced by decreasing p-norm input dimension from
3000 to 2750. This system has 7.7 million parameters This
model was trained on augmented data, it was discriminatively
trained and decoded using enhanced lexicon. It was able to
achieve a word error rate of 11.0%, which is better than the
result reported for unfolded recurrent networks in [13]. Table 3
shows the contributions of each technique.

Table 2: Performance comparison of DNN and TDNN with various temporal contexts

Model Network Context Layerwise Context WER
1 2 3 4 5 Total SWB

DNN-A [−7, 7] [−7, 7] {0} {0} {0} {0} 22.1 15.5
DNN-A2 [−7, 7] [−7, 7] {0} {0} {0} {0} 21.6 15.1
DNN-B [−13, 9] [−13, 9] {0} {0} {0} {0} 22.3 15.7
DNN-C [−16, 9] [−16, 9] {0} {0} {0} {0} 22.3 15.7

TDNN-A [−7, 7] [−2, 2] {−2, 2} {−3, 4} {0} {0} 21.2 14.6
TDNN-B [−9, 7] [−2, 2] {−2, 2} {−5, 3} {0} {0} 21.2 14.5
TDNN-C [−11, 7] [−2, 2] {−1, 1} {−2, 2} {−6, 2} {0} 20.9 14.2
TDNN-D [−13, 9] [−2, 2] {−1, 2} {−3, 4} {−7, 2} {0} 20.8 14.0
TDNN-E [−16, 9] [−2, 2] {−2, 2} {−5, 3} {−7, 2} {0} 20.9 14.2

Table 3: Results on SWBD LVCSR task with data augmentation and enhanced lexicon

Acoustic Model + Language Model WER
Total SWB

TDNN - D + pp 21.9 14.8
TDNN - D + pp + fg 20.4 13.6
TDNN - D + pp + fg + sp + vp 19.2 12.9
TDNN - D + pp + fg + sp + vp + silp 19.0 12.7
TDNN - D + pp + fg + sp + vp + sequence training 17.6 11.4
TDNN - D + pp + fg + sp + vp + sequence training + pa 17.1 11
unfolded RNN + fMLLR features + iVectors [13] - 12.7
unfolded RNN + fMLLR features + iVectors + sequence training [13] - 11.3
CNN/DNN joint training + fMLLR features + iVectors [25] - 12.1
CNN/DNN joint training + fMLLR features + iVectors + sequence training[25] - 10.4

pp : pronunciation probabilities sp : speed perturbation
fg : 4-gram LM rescoring vp : volume perturbation
silp : word position dependent silence probabilities pa : prior adjustment

5.1. Performance of TDNNs on various LVCSR tasks

Table 4: Baseline vs TDNN on various LVCSR tasks with dif-
ferent amount of training data

Database Size WER Rel.
DNN TDNN Change

Res. Management 3h hrs 2.27 2.30 -1.3
Wall Street Journal 80 hrs 6.57 6.22 5.3

Tedlium 118 hrs 19.3 17.9 7.2
Switchboard 300 hrs 15.5 14.0 9.6
Librispeech 960 hrs 5.19 4.83 6.9

Fisher English 1800 hrs 22.24 21.03 5.4

Experiments were done using Kaldi speech recognition
toolkit [27] on Resource Management [28], Wall Street Journal
[29], Tedlium [30], Switchboard [7], Librispeech [31] and the
english portion of Fisher corpora [32]. The amount of training
data available for acoustic modeling varies from 3-1800 hours
across the setups mentioned. The recipes for these experiments
are available in the Kaldi code repository [27] 2.

An average relative improvement 5.52% was observed over
the baseline DNN architecture through the use of TDNN archi-
tecture to process wider contexts. It is to be noted that the num-

2e.g. https://svn.code.sf.net/p/kaldi/code/
trunk/egs/swbd/s5c/local/online/run_nnet2_ms.sh
in revision 5125

ber of parameters in the system are not matched between DNN
and TDNN architectures. However the individual systems were
tuned for best performance, given the architecture.

In the Resource Management medium-vocabulary task, we
did not see gains from TDNNs. This could be due to the slight
increase in parameters in the TDNN architecture when process-
ing larger input contexts.

6. Conclusion
The effectiveness of TDNNs in processing wider context inputs
was shown in small and large data scenarios. An input temporal
context of [t − 13, t + 9] was found to be optimal. Further us-
ing efficient selection of sub-sampling indices speed-ups were
be obtained during training. An average relative improvement
of 6% was reported across 6 different LVCSR tasks, compared
with our previous DNN configuration. Our results are also 2.6%
relative better than a previously reported result from the litera-
ture using an unfolded RNN architecture operating on speaker
adapted features [13]. Our future work involves switching from
the p-norm nonlinearity to ReLU, which according to some pre-
liminary experiments seems to work better in the TDNN frame-
work.

7. Acknowledgements
The authors would like to thank Pegah Ghahrmani for dis-
cussing results on comparison of p-norm and ReLU layers, in
the context of TDNNs.

https://svn.code.sf.net/p/kaldi/code/trunk/egs/swbd/s5c/local/online/run_nnet2_ms.sh
https://svn.code.sf.net/p/kaldi/code/trunk/egs/swbd/s5c/local/online/run_nnet2_ms.sh

8. References
[1] H. Sak, A. Senior, and F. Beaufays, “Long Short-Term

Memory Based Recurrent Neural Network Architectures for
Large Vocabulary Speech Recognition,” Feb. 2014. [Online].
Available: http://arxiv.org/abs/1402.1128

[2] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. Lang,
“Phoneme recognition using time-delay neural networks,” IEEE
Transactions on Acoustics, Speech, and Signal Processing,
vol. 37, no. 3, pp. 328–339, Mar. 1989.

[3] A. Waibel, “Modular construction of time-delay neural networks
for speech recognition,” Neural computation, vol. 1, no. 1, pp.
39–46, 1989.

[4] D. Povey, D. Kanevsky, B. Kingsbury, B. Ramabhadran, G. Saon,
and K. Visweswariah, “Boosted mmi for model and feature-space
discriminative training,” in Proceedings of IEEE International
Conference on Acoustics, Speech, and Signal Processing. IEEE,
2008, pp. 4057–4060.

[5] S. Xue, O. Abdel-Hamid, H. Jiang, L. Dai, and Q.-F. Liu, “Fast
Adaptation of Deep Neural Network based on Discriminant Codes
for Speech Recognition,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. PP, no. 99, pp. 1–1, 2014.

[6] M. Karafiat, L. Burget, P. Matejka, O. Glembek, and J. Cernocky,
“iVector-based discriminative adaptation for automatic speech
recognition,” in 2011 IEEE Workshop on Automatic Speech
Recognition & Understanding. IEEE, Dec. 2011, pp. 152–157.

[7] J. Godfrey, E. Holliman, and J. McDaniel, “Switchboard: tele-
phone speech corpus for research and development,” in Proceed-
ings of the International Conference on Acoustics, Speech and
Signal Processing (ICASSP), vol. 1, Mar 1992, pp. 517–520 vol.1.

[8] H. Hermansky and S. Sharma, “Temporal patterns (traps) in asr of
noisy speech,” in Proceedings of the International Conference on
Acoustics, Speech and Signal Processing (ICASSP), vol. 1, Mar
1999, pp. 289–292 vol.1.

[9] N. Mesgarani, S. Shamma, and M. Slaney, “Speech discrimina-
tion based on multiscale spectro-temporal modulations,” in Pro-
ceedings of the International Conference on Acoustics, Speech
and Signal Processing (ICASSP), vol. 1, May 2004, pp. I–601–
4 vol.1.

[10] J. Andén and S. Mallat, “Deep scattering spectrum,” Signal Pro-
cessing, IEEE Transactions on, vol. 62, no. 16, pp. 4114–4128,
Aug 2014.

[11] S. Thomas, S. Ganapathy, and H. Hermansky, “Phoneme recogni-
tion using spectral envelope and modulation frequency features,”
in Proceedings of the International Conference on Acoustics,
Speech and Signal Processing (ICASSP), April 2009, pp. 4453–
4456.

[12] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition
with deep recurrent neural networks,” in Proceedings of IEEE In-
ternational Conference on Acoustics, Speech, and Signal Process-
ing. IEEE, 2013, pp. 6645–6649.

[13] G. Saon, H. Soltau, A. Emami, and M. Picheny, “Unfolded recur-
rent neural networks for speech recognition,” in Proceedings of
INTERSPEECH, 2014.

[14] F. Grezl, M. Karafiat, and K. Vesely, “Adaptation of multilingual
stacked bottle-neck neural network structure for new language,” in
Proceedings of the International Conference on Acoustics, Speech
and Signal Processing (ICASSP), May 2014, pp. 7654–7658.

[15] X. Zhang, J. Trmal, D. Povey, and S. Khudanpur, “Improving deep
neural network acoustic models using generalized maxout net-
works,” in Proceedings of the International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, May 2014,
pp. 215–219.

[16] S. B. Davis and P. Mermelstein, “Comparison of parametric repre-
sentation for monosyllabic word recognition in continuously spo-
ken sentences,” IEEE Transactions on Acoustics, Speech and Sig-
nal Processing, vol. 28, no. 4, pp. 357–366, 1980.

[17] D. Povey, X. Zhang, and S. Khudanpur, “Parallel training
of deep neural networks with natural gradient and parameter
averaging,” CoRR, vol. abs/1410.7455, 2014. [Online]. Available:
http://arxiv.org/abs/1410.7455

[18] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet,
“Front-end factor analysis for speaker verification,” IEEE Trans-
actions on Audio, Speech, and Language Processing, vol. 19,
no. 4, pp. 788 –798, May 2011.

[19] M. Gibson, “Minimum bayes risk acoustic model estimation and
adaptation,” Ph.D. dissertation, University of Sheffield, 2008.

[20] K. Veselỳ, A. Ghoshal, L. Burget, and D. Povey, “Sequence-
discriminative training of deep neural networks.” in Proceedings
of INTERSPEECH, 2013, pp. 2345–2349.

[21] V. Peddinti, G. Chen, D. Povey, and S. Khudanpur, “An
i-vector based time delay neural network architecture for
far field recognition,” in Proceedings of INTERSPEECH,
2015. [Online]. Available: http://www.danielpovey.com/files/
2015 interspeech aspire.pdf

[22] V. Manohar, D. Povey, and S. Khudanpur, “Semi-supervised
maximum mutual information training of deep neural net-
work acoustic models,” in Proceedings of INTERSPEECH,
2015. [Online]. Available: http://www.danielpovey.com/files/
2015 interspeech entropy.pdf

[23] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio
augmentation for speech recognition,” in Proceedings of INTER-
SPEECH, 2015. [Online]. Available: http://www.danielpovey.
com/files/2015 interspeech augmentation.pdf

[24] G. Chen, H. Xu, M. Wu, D. Povey, and S. Khudanpur,
“Pronunciation and silence probability modeling for ASR,”
in Proceedings of INTERSPEECH, 2015. [Online]. Available:
http://www.danielpovey.com/files/2015 interspeech silprob.pdf

[25] H. Soltau, G. Saon, and T. Sainath, “Joint training of convolu-
tional and non-convolutional neural networks,” in Proceedings
of the International Conference on Acoustics, Speech and Signal
Processing (ICASSP), May 2014, pp. 5572–5576.

[26] F. Seide, G. Li, X. Chen, and D. Yu, “Feature engineering
in context-dependent deep neural networks for conversational
speech transcription,” in Automatic Speech Recognition and Un-
derstanding (ASRU), 2011 IEEE Workshop on. IEEE, 2011, pp.
24–29.

[27] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz,
J. Silovsky, G. Stemmer, and K. Vesely, “The kaldi speech recog-
nition toolkit,” in IEEE 2011 Workshop on Automatic Speech
Recognition and Understanding. IEEE Signal Processing So-
ciety, 2011.

[28] P. Price, W. Fisher, J. Bernstein, and D. Pallett, “The darpa 1000-
word resource management database for continuous speech recog-
nition,” in Proceedings of the International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), Apr 1988, pp. 651–
654 vol.1.

[29] D. B. Paul and J. M. Baker, “The design for the wall street journal-
based csr corpus,” in Proceedings of the workshop on Speech and
Natural Language. Association for Computational Linguistics,
1992, pp. 357–362.

[30] A. Rousseau, P. Deléglise, and Y. Estève, “Ted-lium: an automatic
speech recognition dedicated corpus.” in LREC, 2012, pp. 125–
129.

[31] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: an ASR corpus based on public domain audio books,” in
Proceedings of the International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2015.

[32] C. Cieri, D. Miller, and K. Walker, “The fisher corpus: a resource
for the next generations of speech-to-text.” in LREC, vol. 4, 2004,
pp. 69–71.

http://arxiv.org/abs/1402.1128
http://arxiv.org/abs/1410.7455
http://www.danielpovey.com/files/2015_interspeech_aspire.pdf
http://www.danielpovey.com/files/2015_interspeech_aspire.pdf
http://www.danielpovey.com/files/2015_interspeech_entropy.pdf
http://www.danielpovey.com/files/2015_interspeech_entropy.pdf
http://www.danielpovey.com/files/2015_interspeech_augmentation.pdf
http://www.danielpovey.com/files/2015_interspeech_augmentation.pdf
http://www.danielpovey.com/files/2015_interspeech_silprob.pdf

	 Introduction
	 Relevant work
	 Neural network architecture
	 Sub-sampling
	 Input Features
	 DNN training
	 Sequence training

	 Experimental Setup
	 Data augmentation and enhanced lexicon

	 Results
	 Performance of TDNNs on various LVCSR tasks

	 Conclusion
	 Acknowledgements
	 References

